Enhanced proton flux in the MeV range by defocused laser irradiation
نویسندگان
چکیده
Thin Al foils (50 nm and 6μm) were irradiated at intensities of up to 2x1019Wcm−2 using high contrast (108) laser pulses. Ion emission from the rear of the targets was measured using a scintillator-based Thomson parabola and beam sampling ‘footprint’ monitor. The variation of the ion spectra and beam profile with focal spot size was systematically studied. The results show that while the maximum proton energy is achieved around tight focus for both target thicknesses, as the spot size increases the ion flux at lower energies is seen to peak at significantly increased spot sizes. Measurements of the proton footprint, however, show that the off-axis proton flux is highest at tight focus, indicating that a previously identified proton deflection mechanism may alter the on-axis spectrum. One-dimensional particle-in-cell modelling of the experiment supports our hypothesis that the observed change in spectra with focal spot size is 6 Author to whom any correspondence should be addressed. New Journal of Physics 12 (2010) 085012 1367-2630/10/085012+10$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Evaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملThe response of Geant4 hadronic models to the study of neutrons produced in proton irradiation to the light materials
Neutron is one of the products of the interaction of high energy protons with light nuclei. Using computational Monte Carlo codes, it is possible to calculate and predict the neutron spectrum, neutron flux, and doses by simulating the system. But the use of different hadronic models in this process can influence the results of these calculations. In this research, the response of the four hadro...
متن کاملDose distribution of protons and flux of secondary particles in breast proton therapy.
Introduction: Proton therapy is newer therapeutic method for early stage breast cancer. Proton beams release most of their energy in the Bragg peak and then will be a rapid decline in their end. When protons interact with matter, produce secondary particles like neutrons and gammas, and these unwanted radiation has no beneficial effect and also is believed to increase the risk ...
متن کاملDependence of quality of thallium-201 on irradiation data
Backgrounds: Thallium-201 is produced through 203Tl (p, 3n) 201pb 201Tl reaction by cyclotron. This radioisotope has known as one of the cyclotron radioisotopes which is used for myocardial perfusion in the coronary artery disease, Tl-201 after chemical purification and quality control in the form of 201Tl-chlorid is ready to send to the hospitals. Materials and methods: In this work the effect...
متن کاملبررسی اثر تغییر انرژی بر توزیع عمق-دوز در پروتون درمانی تومور چشمی با استفاده از کد MCNPX
Introduction: Depth-dose distribution curve of protons in the matter has a maximum is called Bragg peak. Bragg peak of a monoenergetic proton beam is too narrow. The spread out Bragg peak should be created for full coverage of the tumor. The spread out Bragg peak is obtained in the depth of the tumor with superposition of the several Bragg peaks. The aim of this study was coverage of an eye tum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010